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INTRODUCTION AND RATIONALE: The drastic
morphological differences between maize and
its wild relatives gave rise to more than a cen-
tury of debate about its origins. Today, themost
widely accepted model is also the simplest—
maize was domesticated once from the wild
annual grass Zea mays ssp. parviglumis in
the lowlands of southwest Mexico. More recent-
ly, however, genomic surveys of traditionalmaize
varieties inbothMexico andSouthAmericahave
identified evidence for gene flow from a second
wild relative, Zeamays ssp.mexicana, a weedy
annual grass adapted to the central Mexican
highlands. These results, combined with long-
standing archaeological evidence of hybridiza-
tion, challenge the sufficiency of a simple model
of a single origin.

RESULTS: To elucidate the genetic contribu-
tions of Zea mays ssp. mexicana to maize, we
analyzed>1000wild anddomesticatedgenomes,

including 338 newly sequenced traditional vari-
eties. We found ubiquitous evidence for ad-
mixture between maize and Zea mays ssp.
mexicana, including in ancient samples from
North and South America, diverse traditional
varieties, and evenmodern inbred lines. These
results are mirrored in a genotyping survey of
>5000 traditional varieties representingmaize
diversity across the Americas. The only maize
sample surveyed that lacks strong evidence for
admixture with Zea mays ssp. mexicana is a
single ancient South American sample N16,
dating to ~5500 years before present.
We next fit graphs of population history to our

data, revealingmultiple admixture events in the
history of modernmaize. On the basis of these
results, we propose a new model of maize ori-
gins, which posits that, some 4000 years after
domestication, maize hybridized with Zea mays
ssp.mexicana in thehighlandsof centralMexico.
The resulting admixedmaize then spread across

the Americas, replacing or hybridizing with pre-
existingpopulations.The timingof this secondary
dispersal is roughly coincident with archaeolog-
ical data showing a transition to a staple maize
diet in regions across Mesoamerica.
We then explored variation in ancestry along

the maize genome. We found that 15 to 25% of
the genome could be attributed to Zea mays
ssp. mexicana ancestry. We identified regions
in which Zea mays ssp. mexicana alleles had
reached high frequency in maize, presumably
as a result of positive selection.We investigated
one of these adaptive introgressions in more
detail, using CRISPR-Cas9 knockout mutants
and overexpression lines to demonstrate the
role of the circadian clock gene ZmPRR37a in
determining flowering time under long-day
conditions. Our results suggest that introgres-
sion at this locus may have facilitated the adap-
tation of maize to higher latitudes.
Finally, we explored the contributions of

Zea mays ssp. mexicana alleles to phenotypic
variation in maize. Admixture mapping iden-
tified at least 25 loci in modern inbred lines
where highland teosinte ancestry associateswith
phenotypes of agronomic importance, from oil
content to kernel size and disease resistance,
as well as a large effect locus associated with
cob diameter in traditional maize varieties. We
then modeled the additive genetic variance of
each phenotype, allowing us to estimate that
Zea mays ssp. mexicana admixture explained
ameaningful proportion of the additive genetic
variation for many traits, including 25% of the
variation for the number of kernels per row
and nearly 50% of some disease phenotypes.

CONCLUSION: Our extensive population and
quantitative genetic analysis of domesticated
maize and its wild relatives uncovered a sub-
stantial role for twodifferentwild taxa inmaking
modernmaize. We propose a newmodel for the
origin ofmaize that can explain both genetic and
archaeological data, and we show how variation
inZeamays ssp.mexicana is a key component of
maize diversity, both at individual loci and for
genetic variation underlying agronomic traits.
Ourmodel raises a number of questions about

how and why a secondary spread of maize may
have occurred, but we speculate that the timing
of admixture suggests a possible direct role for
hybridization between maize and Zea mays
ssp. mexicana in improving early domesticated
forms of maize, helping to transform it into the
staple crop we know today. ▪
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Admixture analysis reveals widespread contributions of two teosintes to modern maize. (A) Proportion of
highland teosinte admixture for traditional maize varieties across the Americas. (B) Admixture graph representing
our model of maize evolution. (C) Cartoon depiction of proposed maize domestication and dispersal.
(D) Characterization of admixture tracts along maize genomes. (E) Admixture for cob weight reveals a
peak on chromosome 1.
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The origins of maize were the topic of vigorous debate for nearly a century, but neither the current
genetic model nor earlier archaeological models account for the totality of available data, and recent
work has highlighted the potential contribution of a wild relative, Zea mays ssp. mexicana. Our population
genetic analysis reveals that the origin of modern maize can be traced to an admixture between
ancient maize and Zea mays ssp. mexicana in the highlands of Mexico some 4000 years after
domestication began. We show that variation in admixture is a key component of maize diversity, both
at individual loci and for additive genetic variation underlying agronomic traits. Our results clarify the
origin of modern maize and raise new questions about the anthropogenic mechanisms underlying
dispersal throughout the Americas.

T
he domestication of crops transformed
human culture. Formany crops, the wild
plants that domesticates aremost closely
related to can be readily identified by
morphological and genetic similarities.

But the origins ofmaize (Zeamays subsp.mays)
have long been fraught with controversy,
even with its global agricultural importance,
ubiquity, and extended scrutiny as a genetic
model organism. Although there was general
agreement that maize was most morphologi-
cally similar to North American grasses in the
subtribeTripsacinae (1, 2), none of these grasses
bear reproductive structures similar to themaize
ear, in which seeds are exposed along a com-
pact, nonshattering rachis. The form is so radi-
cally distinct from its relatives that the maize
ear has been called “teratological” (3) and a
“monstrosity” (4).
Explanations for the ancestry of maize have

long been contentious (5). Amodel popular for
much of the 20th century, based on extensive
evaluation of the morphology of archaeologi-
cal samples, argued that modern maize was
the result of hybridization between a now-
extinct wild maize and another wild grass
(6). This archaeological model, however, fails
to explain cytological (7) or genetic (8, 9) data
showing that maize is most closely related to

the extant wild grass Zeamays ssp. parviglumis
(hereafter parviglumis). Today, the most widely
accepted model is also the simplest—maize was
domesticated from a wild annual grass in the
genus Zea, commonly known as teosinte. This
idea, originatingwithAscherson (10) and cham-
pioned by George Beadle throughout the 20th
century (4, 7), became firmly cemented in the
literature after genetic analysis revealed clear
similarities betweenmaize and teosinte (8, 9, 11).
Nonetheless, this simple genetic model is in-
sufficient to explain disparities between gen-
etic and geographic overlap between maize
and parviglumis (12) or morphological sup-
port for admixture in archaeological samples
(13–15).
Much of the early work onmaize origins was

complicated by the relatively poor characteri-
zation of the diversity of annual teosinte (16).
In addition to the lowlandparviglumis, the other
widespread annual teosinte is Z. mays ssp.
mexicana (hereaftermexicana), found through-
out thehighlands ofMexico. These taxadiverged
30,000 to 60,000 years ago (17, 18) and show
clear morphological (19), ecogeographic (20, 21),
and genetic (22, 23) differences, as well as local
adaptation along elevation (24). In contrast to
the overall genetic similarities between maize
and parviglumis, some early genetic studies

identified sharing of alleles betweenmexicana
and highlandmaize (25), a result confirmed by
extensive genome-wide data (26, 27). Maize and
mexicana co-occur in the highlands of Mexico,
but recent work has revealedmexicana ances-
try far outside this range, including in ancient
maize fromNewMexico (28), modern samples
in the Peruvian Andes (29), and individual al-
leles apparently selected broadly in modern
maize (30, 31).

Admixture with mexicana is ubiquitous in
modern maize

Archaeological data suggest that after its ini-
tial domestication in the lowlands of the Balsas
River basin, maize was introduced to the high-
lands of central Mexico by ~6200 cal BP (calen-
dar years before present) (32), where it first
came into sympatry withmexicana. By this
time, however, maize had already reached
Panama (by~7800 cal BP) (33) and even farther
into South America (by ~6900 to 6700 cal BP)
(34–36). Samples from South America that
reflect dispersal events before maize coloniza-
tion of the Mexican highlands should thus not
exhibit evidence of admixture withmexicana.
Indeed, tests of admixture find no evidence
ofmexicana ancestry in N16, a ~5500 cal BP
maize cob from northern Peru (37).
To investigate evidence ofmexicana admix-

ture across a broad sampling of maize, we
applied f4 tests (38) using a sample of thediploid
perennial teosinte Zea diploperennis (39) as the
outgroup. The greatest diversity of maize is
found inpresent-dayMexico, butwhole-genome
resequencing exists for only a handful of tra-
ditional Mexican maize (40). We therefore
sequenced 267 accessions of open-pollinated
traditional maize from across Mexico (Fig. 1A
and data S1 and S2). Applying f4 tests revealed
significant admixture with mexicana in all
maize except the ancient Peruvian sample
N16 (Fig. 1B and data S3). Analysis of subsets
of the data allowing use of a greater number of
single-nucleotide polymorphisms (SNPs) reveals
higher f4 values for N16, but these are still
substantially lower than for all other samples
(data S4). We find evidence for mexicana ad-
mixture well outside of Mexico, including in
modern samples from the US Southwest and
the Andes, consistent with previous work (29),
as well as a newly sequenced set of 73 tradi-
tional Chinese varieties that represent maize
dispersal out of the Americas after European
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colonization (data S1 and S2). We extended
our search to ancient samples, again finding
mexicana admixture in archaeological samples
from the Tehuacán Valley in central Mexico
dating to ~5300 cal BP (41) and both lowland
andhighland (>2000mabove sea level) samples
fromSouthAmerica dating to ~1000 cal BP (42).
Finally, we turned tomodern breedingmaterial,
where, again, f4 tests identify significant admix-
ture in a diversity panel of >500modern inbred
lines (43). In sum, we find evidence ofmexicana
ancestry in all examined maize samples dating
as early as ~5300 cal BP.
To investigate the importance of introgres-

sion to maize diversity more broadly, we ran
STRUCTURE (44) to estimatemexicana ances-
try in genotyping data from amuch larger sam-
ple of 5373 traditional maize varieties and 310
wild samples ofmexicana and parviglumis
fromacross theAmericas (45, 46). Thesemaize

samples also show ubiquitous evidence of
mexicana admixture (Fig. 1C). More sur-
prisingly, principal component analyses of
these maize samples reveal that the major axis
of genetic variation acrossmaize in theAmericas
is nearly perfectly correlatedwith the proportion
of the genome showing mexicana ancestry
[coefficient of determination (R2) =0.97; Fig. 1D].
The subspecies mexicana and parviglumis
diverged tens of thousands of years before
domestication (18), and it thus seems plausible
that differences in the proportion of these
ancestries dominate more recently derived
aspects of maize diversity.

A novel model of maize origins

We interpret the timing and universality of
mexicana admixture as evidence supporting a
novel model of maize origins (Fig. 2A). Consis-
tent with previous work (42, 47), we propose

that maize dispersed out of the Balsas River
basin in Mexico after domestication from
parviglumis, quickly reaching South America
by at least ~6500 cal BP (48). Then, ~6000 cal
BP, maize was adopted by peoples living in the
highlands of central Mexico, resulting in admix-
turewith the sympatricmexicana (12, 26, 27, 32).
Ancient samples showing mexicana admixture
suggest that maize spread rapidly from the
highlands of Mexico, replacing or mixing with
existing populations across the Americas, intro-
ducing mexicana alleles as it moved. As it
entered into the lowlands of Mexico, maize
must have once again come into contact with
parviglumis. Thismodel is consistent with the
second wave of maize migration into South
America posited by Kistler et al. (49) and sup-
ported by recent chloroplast data (50) but fur-
ther explains the origin of that wave and the
existence ofmexicana alleles in South America,
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Fig. 1. Admixture from Zea mays ssp. mexicana is ubiquitous in maize. (A) Sampling of newly sequenced, published, and ancient maize genomes. See data S1
for details on sampling. (B) f4 statistics for different groups of maize. (C) Proportion of mexicana admixture estimated for ~5000 field collections from the International
Maize and Wheat Improvement Center (CIMMYT). (D) Correlation (R2 = 0.97) between the first principal component (PC1) of genetic diversity in 5373 CIMMYT traditional
maize varieties and mexicana admixture.
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far outsidemexicana’s native range, by at least
~1000 cal BP.
To formally evaluate our model, we fit ad-

mixture graphs to f2 statistics from five tradi-
tional maize varieties from the Andes (40) and
118 of our newly sequenced traditional maize
varieties from Mexico that were collected at
low elevation (<1500 m above sea level) (51).
Our fitted admixture graph (Fig. 2A) estimates
that initial hybridization withmexicanawas
substantial, consistent with estimates from
modern-day traditionalmaize varieties from the
highlands of central Mexico (27). Subsequent
admixture with parviglumis reduced the con-
tribution ofmexicana to maize ancestry out of
the highlands, but our model estimates that
mexicana ancestry still represents ∼25% of the
genome of extant traditional varieties inMexico.
A simplified version of the model estimates
nearly identical ancestry proportions formodern
maize inbred lines (fig. S1). Although these
estimates are lower than those from reduced
representation genotyping (Fig. 1C), genotyping
SNPsoverestimate genome-wide admixture pro-
portionsowing to their biaseddistributionacross
the genome (51) (fig. S2). A thorough evaluation
of alternative graphs (52) found models with
nominally better fits to the data (53), but none
had significantly better out-of-sample predic-
tive ability (data S5; lowest empirical bootstrap
P value of 0.38), and wewere unable to identify
a better-fitting graph with fewer admixture
events. Althoughmany of the alternative graphs
include implausible phylogenetic histories, and
some incorporate hybrid parviglumis-mexicana

populations (54), all of the alternative graphs
qualitatively support our proposed model in
requiring postdomestication admixture with
mexicana. Finally, we note that our model is
consistent with an independent population
genetic approach (55) that estimated the timing
of mexicana admixture at 5716 years (±5614)
(51), which is exceptionally close to the earliest
archaeological evidence of maize in the high-
lands (32) and substantially later than the first
evidence of domesticated maize (56).
Together, the confluence of archaeological

and genetic data suggests that mexicana ad-
mixture was central to thewidespread use and
dispersal ofmaize in theAmericas by ~4000 cal
BP (Fig. 2B). The timing of admixture between
maize andmexicana in the highlands ofMexico
between 6000 and 4000 cal BP corresponds
with observed increases in cob size and the
number of seed rows in archaeological samples
(57–59). Southward dispersal of maize varieties
with mexicana admixture coincides with the
appearance of improved maize varieties in
Honduras (49) but contrastswith a coevalmove-
ment of peoples northward (60). Archaeological
samples demonstrate the presence of maize
as a staple grain in the neotropical lowlands
of Central America subsequent tomexicana
admixture, between 4700 and 4000 cal BP
(59, 61, 62). Ultimately, all varieties of maize
in Mesoamerica hadmexicana admixture by
~3000 cal BP as it became a staple grain across
the entire region (28, 58, 59, 63). Early Meso-
american sedentary agricultural villages also
began developing at this time, forming the basis

for demographic expansion and the emergence
of later state-level societies dependent on more-
intensive forms of maize agriculture (64–67).

Variation in admixture along the genome

Having established a central role for both
parviglumis and mexicana in the origins of
modernmaize diversity, we next explored varia-
tion inmexicana ancestry across the genome.
Using unadmixed parviglumis andmexicana
individuals (39) as references, we applied an
ancestry hidden Markov model to identify
regions ofmexicana ancestry along individual
maize genomes (51). In close agreement with
our admixture graph, we estimate 15 to 25%
averagemexicana ancestry across 845maize
genomes (mean: 18%; data S6) (68). This varia-
tion in total ancestry among modern maize is
much greater than that predicted from a single
pulse of ancient admixture (51) and likely reflects
a combination of selection as well as ongoing
gene flow in parts of the range (27).Mexicana
ancestry also varies considerably along the
genome (Fig. 3, A and B). The vast majority of
introgressed haplotypes are small—on the scale
of 10 kb (fig. S3)—consistent with a relatively
ancient origin. In addition to numerous small
introgressed haplotypes, we identify signals
consistent with an important role for inversion
polymorphisms. These include the apparent
presence of the large inversion Inv4m—a well-
studied target of adaptive introgression inmaize
from highland environments (26, 27)—in two
Chinese inbred lines and one traditional
Mexican variety (Fig. 3A).We also see high levels
ofmexicana admixture in the region of Inv1n, a
50-Mb inversion common in parviglumis but
rare inmexicana and entirely absent in maize
(69) (fig. S4). Finally, we estimate drastically
decreased levels ofmexicana introgression for
chromosomes 5, 8, and 9 (fig. S5), which we
speculate may be attributable to the presence
of a recently characterized genetic incompati-
bility on chromosome 5 (70) andmultiple large
mexicana-specific inversions on chromosomes
8 and 9 that could hinder introgression by re-
pressing recombination (18, 22).
A detailed look at admixture along individual

genomes enabled us to begin to investigate the
functional significance of variation inmexicana
admixture. First, consistent with the possibility
thatmexicana alleles may have served to com-
plement recessive deleterious genetic variants
that rose to appreciable frequency in early do-
mesticated maize (40), we find significantly
lower genetic load on introgressedmexicana
haplotypes (51) (fig. S6). We then turned to
individual loci, identifying regions of the ge-
nome inwhichhigh-confidencemexicana alleles
(>90% posterior probability) were at high fre-
quency (>80%) across allmodernmaize, consist-
ent with recent positive selection (51) (Fig. 3, A
and B, and fig. S7). We found these loci clus-
tered into 11 regions, which overlap quantitative

Fig. 2. A novel model of maize origins. (A) Admixture graph of lowland Mexican and highland Andean
maize showing three hypothesized admixture events (dotted lines): (i) between mexicana and an ancient
North American lineage of maize sister to N16, (ii) between admixed maize and parviglumis as maize
moved back out of the highlands, and (iii) between admixed maize and an ancient South American lineage
represented by N16 as admixed maize moved into South America. Estimated edge lengths and admixture
proportions (with confidence intervals in parentheses) are shown. (B) Proposed model of maize origin
showing two waves of movement out of Mexico: early movement after initial domestication in the Balsas
(top, black) and a second wave out of the highlands of Mexico after admixture with mexicana (bottom, red).
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trait loci for agronomically relevant phenotypes
(71) and include genes with well-studied func-
tions in Arabidopsis such as disease resistance
and floral morphology (data S7).
We focused on one region on chromosome

7, where we found a narrow peak of high-
frequencymexicana alleles that overlapswith
maize-teosinte flowering time quantitative
trait loci (71) and is centered on the gene
Zm00001d022590, also known as ZmPRR37a
(Fig. 3B). Alleles frommexicana at ZmPRR37a
SNPs are found in up to 89% of all maize, in-
cluding the reference genome line B73 (fig. S8).
ZmPRR37a is thought to be involved in the
circadian clock–controlled flowering pathway
(72) and is an ortholog of the sorghum gene
Ma1, which controls flowering under long-day
conditions (73). To validate this function, we
obtained a CRISPR-Cas9 knockout mutant

from a targetedmutagenesis library (74) and
developed two transgenic overexpression lines
(51). Consistent with its hypothesized role in
response to day length, ZmPRR37a knockout
mutants exhibited a significantly earlier flower-
ing phenotype in long-day conditions (two-
tailed Student’s t test, P values are indicated in
fig. S9, A, B, and D) but showed no effect in
short-day conditions (two-tailed Student’s t test,
P values are indicated in fig. S9, A and C), and
overexpression lines exhibited significantly
later flowering in both long- and short-day con-
ditions (two-tailed Student’s t test, P values are
indicated in Fig. 3, C to E). Maize carrying the
mexicana introgression at ZmPRR37a shows
lower levels of expression than parviglumis
(75), and our functional evaluation thus sug-
gests thatmexicana alleles at ZmPRR37amay
have helped maize adapt to earlier flowering

in long-day conditions as it expanded out of
Mexico to higher latitudes.

Admixture with mexicana underlies phenotypic
variation in maize

Admixture with teosinte has been associated
with phenotypic variation for a number of traits
in traditional maize (76), andmexicana gene
flow has been instrumental in the phenotypic
adaptation ofmaize to the highlands (26, 77–79).
Our analysis of teosinte ancestry across named
varieties replicates historical estimates based
onmorphology (fig. S10 anddata S8), suggesting
a broader role formexicana ancestry in pattern-
ing phenotypic variation in maize. Indeed, if
mexicana admixture played a key role in the
dispersal and use of maize, mexicana alleles
should contribute to agronomically relevant
phenotypic variation. We thus combined our

Fig. 3. Variation and functional validation of mexicana admixture. (A) (Top)
Number of high-confidence mexicana alleles (>90% posterior probability) that
exist in >80% lines of all modern maize along chromosome 4 (black points) and
average mexicana ancestry (red). (Bottom) Mexicana ancestry of three inbred
lines in the region around chromosome inversion Inv4m. (B) (Top) Number of
high-confidence mexicana alleles (>90% posterior probability) that exist in
>80% lines of all modern maize along chromosome 7 (black points) and average
mexicana ancestry (red). (Bottom) mexicana ancestry in B73 across the

ZmPRR37a gene model (black bar). The differences of days to anthesis for
nontransgenic (NT) and overexpression (OE) lines of ZmPRR37a in (C) long-day
(LD) conditions (2022, China, 124°49′E, 43°30′N) and (D) short-day (SD)
conditions (2021, China, 108°43′E, 18°34′N). The data in (C) and (D) are
means ± SE. The numbers in each column indicate the sample sizes. The level of
significance was determined by a two-tailed Student’s t test. (E) Nontransgenic
and two independent overexpression lines of ZmPRR37a grown in long-day
conditions. Scale bar, 10 cm.

RESEARCH | RESEARCH ARTICLE

Yang et al., Science 382, eadg8940 (2023) 1 December 2023 4 of 8

D
ow

nloaded from
 https://w

w
w

.science.org at Shandong A
gricultural U

niversity on M
arch 11, 2024



estimates of admixture with data from 33
phenotypes to perform multivariate admixture
mapping across 452 maize inbreds (51). At a
false discovery rate of 10%, we identified 92
associations, which we grouped into 22 peaks
representing 25 candidate genes (Fig. 4, fig. S11,
and data S9 and S10). These include a signif-
icant association with zeaxanthin—a carotenoid
pigment that plays a role in light sensing and
chloroplast movement (80) and is of signif-
icance to human health (81)—approximately
1-kb downstream of the gene ZmZEP1, a key
locus in the xanthophyll cycle that regulates
zeaxanthin abundance in low-light conditions
(fig. S12A). Haplotype visualization reveals clear
sharingbetweenmaize andmexicana (fig. S12B),
and themexicana-like haplotype increases the
expression of ZmZEP1 and reduces zeaxanthin
content in maize kernels (fig. S12, C and D).
We also see associations with well-known lipid
metabolism genes such as dgat1 and fae2 (82).
Themexicana allele at dgat1 is associated with
a decrease in the proportion of linoleic acid but
an increase in overall oil content, but variation in
mexicanaancestry isnot in linkagedisequilibrium

with the well-studied amino acid variant at this
locus (83) (fig. S13). Although expression ofdgat1
has been suggested to play a role in cold toler-
ance in maize and Arabidopsis (84, 85), a pre-
liminary experiment in maize seedlings failed
to identify differences in cold tolerance in lines
of varying ancestry at dgat1 (fig. S14). Finally,
in addition to identifying compelling candi-
date loci inmodern inbreds, we applied a novel
genotype-by-environment association map-
ping approach (86) in a large set of traditional
maize varieties evaluated across 13 different
common garden trials (87). We find a strong
association on chromosome 1 (Fig. 4C), where
mexicana ancestry increases cob size. The
candidate gene closest to the associated SNP,
Zm00001d029675, was recently identified as a
target of selection during breeding efforts in
both the United States and China (88).
While genome-wide association studies

(GWASs) can identify individual loci with large
effects, it is likely that mexicana admixture
contributes important variation of smaller ef-
fect size to polygenic traits. To test this hypoth-
esis, we used our inbred association panel and

phenotype data to estimate the proportion
of additive genetic variance contributed by
mexicana (51) (data S11). We estimate that
mexicana admixture explains ameaningful pro-
portion of the additive genetic variation for
many of these traits, including nearly 25% for
the number of kernels per row, 15% for plant
height, 10% for flowering time, and 15 to nearly
50% for multiple disease phenotypes (Fig. 4D).

Discussion

Conflicting archaeological, cytological, genetic,
and geographic evidence led to two irreconcilable
models for the origin ofmaize. In this study, with
more than 1000 genomes of maize and teosinte,
including 338 newly sequenced traditional varie-
ties, we revisited the evidence for admixture be-
tween maize and its wild relative Zea mays ssp.
mexicana. We propose a new model of maize
origins, which posits that, after admixture with
mexicana in the highlands of central Mexico,
admixed maize spread across the Americas,
either replacing or hybridizing with preexisting
maize populations. While this model is consis-
tent with both genetic and archaeological data,

Fig. 4. Phenotypic impacts of mexicana admixture. (A) Effect sizes (scaled
by trait standard deviation) across traits for the 22 lead SNPs from admixture
GWAS in the inbred diversity panel. Lead SNPs are the lowest P value SNP
within 500-kb windows around significant associations. Gray boxes represent
missing data owing to low minor allele frequency. Black outlines show the trait
with the largest absolute value effect size for each SNP. Numbers above each
group of columns represent chromosomes, while numbers below represent
megabase positions. Trait name acronyms and descriptions are in data S9,

and trait acronym colors represent categories shown in (D). (B) Manhattan
plot of admixture GWAS for linoleic acid content in the inbred diversity panel.
The peak includes the gene dgat1. (C) Manhattan plot of admixture GWAS for
cob weight using traditional maize varieties. Red points in (B) and (C) represent
lead SNPs. (D) Variance partitioning in the inbred diversity panel. Shown
is the proportion of additive genetic variance (VA) explained by mexicana
admixture, with each point representing the estimate for a single
phenotype.
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it also raises a number of questions. Among
these, most notable is perhaps the question of
why and how this secondary spread occurred—
was it due to some advantage of the admixed
maize over earlier domesticated forms, or was
the spread coincidental with demic or cultural
exchange among human populations (61)?
Changes in maize cob morphology and die-

tary isotope data from human populations in
Central America indicate a transition between
early cultivation and the use ofmaize as a staple
grain between 4700 and 4000 cal BP (59). This
timing suggests a possible direct role for hy-
bridization between maize and mexicana in
improving early domesticated forms of maize.
To better understandwhy admixedmaizemay
have beenbeneficial for early farmers,we sought
to investigate associations between mexicana
alleles and phenotypes in extant maize. We
identified and functionally validated a locus
important for photoperiodicity and flowering
time and found candidate genes associated
with important agronomic phenotypes, includ-
ing nutritional content and the size of kernels
and cobs. None of these loci individually, how-
ever, are likely sufficient to drive a large advantage
of admixed maize. And although we show that,
combined, alleles introgressed frommexicana
explain a meaningful proportion of additive
genetic variance for agronomic and disease
resistance traits, it remains unclear whether
this novel variation could drive rapid adoption
of admixed maize. In addition to variation at
these specific phenotypes, admixture may have
played a role in the spread of maize by aug-
menting genetic diversity and ameliorating
genetic load in early domesticated populations,
perhaps even providing somegeneralized hybrid
vigor. Indeed,we showthatmexicanaalleles carry
less load than maize alleles (fig. S6), and maize-
mexicana hybrids show extensive heterosis for
both viability and fecundity. This process could
be augmented by similar ecologies as well—the
global ecological niche of cultivated maize more
closely reflects that ofmexicana than parviglumis
(69), and, like maize, mexicana has successfully
colonized novel habitats at higher latitudes (89).
Modern ethnographic evidence is also consis-
tent with these ideas, as farmers continue to
introgress teosinte into theirmaize populations
to make them “stronger” (16, 90, 91).
Introgression between relatives has long been

recognized as amajor source of plant adaptation
(92), yet only with the advent of molecular
markers have we begun to recognize the key
role that gene flow from wild relatives has
played in crop evolution (93). Here, with exten-
sive sampling and genomic coverage of both
traditional andmodern varieties as well as wild
relatives and ancient samples, we argue that
introgression froma closewild relative ofmaize
was pivotal to its success as a staple crop. The
presence of adaptive variation inwild relatives
is not specific to maize, and we predict that a

similar history will be revealed for many other
crops. Indeed, preliminary results already sug-
gest a key role for hybridization in the evolution
of rice, tomato, barley, and others (94–96).
These results not only highlight the past im-
portance of crop wild relatives but also point
to their potential as a source of adaptive
diversity for future breeding.Most importantly,
the work presented here suggests that, formany
crops, millennia of diligent efforts by early
farmers have capitalized on this diversity and
that an abundance of relevant functional di-
versity may already be segregating in tradition-
al varieties or preserved ex situ in germplasm
gene banks.

Materials and methods summary

SNPdata from 507modernmaize inbred lines,
90 Z. mays ssp. Mexicana, 75 Z. mays ssp.
parviglumis, and two Z. diploperennis were
obtained from version 1 of the ZEAMAP project
(39). We also sequenced an additional 338 tra-
ditional maize varieties, including 267 from
across Mexico and 71 from China (data S1
and S2) and collected DNA sequencing data of
30 published traditional varieties and 10 ancient
maize samples (data S1). For these additional
genomes, we called sites from the enlarged
ZEAMAP of these lines. For ancientmaize, we
did complete quality control on the raw reads
by cutting low-quality bases and removing the
adaptors using fastp (97). Then we adopted an
ancient DNA mapping method optimized for
reducing reference sequence bias and improving
the accuracy and sensitivity of ancient DNA
sequence identification (98). We used map-
Damage2 (99) to estimate damage parameters
from the bam files, and then we rescaled base
quality scores according to the probability
that a base derives from deamination (100).
We performed pseudohaploid calling with
given ZEAMAP sites using ANGSD (101). SNPs
supported by <2 reads and reads with mean
Phredscore of <20 andmapping quality of <20
were filtered. The A alleles located in the 3′
end (≤30% of the supporting reads) and the
T alleles located in the 5′ end (≤30% of the
supporting reads) were hard masked. The f4
test was carried out by ADMIXTOOLS 2 (52)
with Z. diploperennis as the outgroup and
our unadmixedmexicana and parviglumis as
the two contributors to the test population.
Admixture graphs were estimated and com-
pared using ADMIXTOOLS2 (52). The timing
of admixture between mexicana and maize
was estimated by DATES (55). Admixture with
mexicana in CIMMYT SeeD GBS samples was
estimated by STRUCTURE (44). The genome-
wide patterns of introgression of all 845 maize
were investigated by ELAI (102). We defined
high-frequency mexicana alleles as those for
which >80% of the 845 maize lines had ELAI
scores > 1.8. The functions of ZmPRR37a were
investigated by transgenic overexpression or

CRISPR-Cas9 gene editing. The constructed
overexpression and gene-editing vectors were
transformed into maize inbred line KN5585.
Genome-wide association ofmexicana ancestry
was performed using JointGWAS (86) for 33
phenotypes in an inbred association panel (103)
and a multisite set of phenotypic trials of tra-
ditional varieties (87). Variance partitioning of
phenotypes of 507 maize lines was performed
by LDAK (104) using the kinship calculated by
OSCA (105) from ELAI scores. All details of the
materials and methods, including those sum-
marized above, are provided in the supple-
mentary materials.
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