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Abstract

Background: Phenylalanine ammonia-lyase (PAL; EC4.3.1.5) is a key enzyme of the phenylpropanoid pathway in
plant development, and it catalyses the deamination of phenylalanine to trans-cinnamic acid, leading to the
production of secondary metabolites. This enzyme has been identified in many organisms, ranging from
prokaryotes to higher plants. Because Nelumbo nucifera is a basal dicot rich in many secondary metabolites, it is
a suitable candidate for research on the phenylpropanoid pathway.

Results: Three PAL members, NnPALT, NnPAL2 and NnPAL3, have been identified in N. nucifera using genome-wide
analysis. NnPALT contains two introns; however, both NnPAL2 and NnPAL3 have only one intron. Molecular and
evolutionary analysis of NnPALT confirms that it is an ancient PAL member of the angiosperms and may have a
different origin. However, PAL clusters, except NnPALT, are monophyletic after the split between dicots and
monocots. These observations suggest that duplication events remain an important occurrence in the evolution
of the PAL gene family. Molecular assays demonstrate that the mRNA of the NnPALT gene is 2343 bp in size and
encodes a 717 amino acid polypeptide. The optimal pH and temperature of the recombinant NnPAL1 protein are
9.0 and 55°C, respectively. The NnPALT protein retains both PAL and weak TAL catalytic activities with K, values of
1.07 mM for L-phenylalanine and 3.43 mM for L-tyrosine, respectively. Cis-elements response to environmental stress
are identified and confirmed using real-time PCR for treatments with abscisic acid (ABA), indoleacetic acid (IAA),
ultraviolet light, Neurospora crassa (fungi) and drought.

Conclusions: We conclude that the angiosperm PAL genes are not derived from a single gene in an ancestral
angiosperm genome; therefore, there may be another ancestral duplication and vertical inheritance from the
gymnosperms. The different evolutionary histories for PAL genes in angiosperms suggest different mechanisms of
functional regulation. The expression patterns of NnPALT in response to stress may be necessary for the survival of
N. nucifera since the Cretaceous Period. The discovery and characterisation of the ancient NnPALT help to elucidate
PAL evolution in angiosperms.
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Background

The phenylpropanoid pathway is an important branch of
the plant secondary metabolism pathways that produces
many essential secondary metabolites. In this pathway,
secondary metabolic products, such as lignin, flavonoids
and coumarins, play important roles in plant growth, de-
velopment, mechanical support, and disease resistance
[1,2]. Phenylalanine ammonia-lyase (PAL; E.C.4.3.1.5) is
the first and key enzyme between primary and secondary
metabolism, and it catalyses the biotransformation of
L-phenylalanine to trans-cinnamic acid. The synthesis
of many secondary metabolites, such as flavonoids,
flavonols, anthocyanins, condensed tannins, lignins, cou-
marins, and ubiquinone occur downstream of the phe-
nylpropanoid pathway, [3-6] and is controlled by PAL.
Koukol and Conn reported the first plant PAL in 1961.
Currently, it is known that the PAL is widely found in all
higher plants, a few fungi, and a single prokaryote, Strep-
tomyces, but not animals [7]. Furthermore, PAL shows
potential to treat human phenylketonuria, an inborn
error of phenylalanine metabolism [8]. Several studies
[9-12] have shown that the PALs from Rhodotorula
photosynthetic bacteria and monocot plants also utilise
tyrosine in addition to phenylalanine; however, the dicot
PALs only utilise Phe efficiently. During the past four
decades, many PAL genes have been cloned and studied
from various plants, such as Ginkgo biloba [13], Ephedra
sinica [14], Oryza sativa [15], Isatis indigotica [16], Ara-
bidopsis thaliana [17], Jatropha curcas [18], and Lycoris
radiate [19], and the first crystal structure of a plant
PAL was determined from parsley (Petroselinum cris-
pum) [20]. PAL exists as a small multigene family, con-
sisting of 2—6 members; however, some species contain
additional member, such as potato (~40 copies) [21] and
tomato (~26 copies) [22]. During the evolution of higher
plants, the plant PAL genes diversified into various func-
tions in each species, such as Arabidopsis thaliana [23].
Another important ammonia lyase, histidine ammonia-
lyase (HAL), is found in prokaryotes and animals and
plays roles in the general histidine degradation pathway.
The crystal structure of HAL from Pseudomonas putida
revealed its catalytic mechanism of novel polypeptide
modification [24]. Despite large differences in the pri-
mary sequence of proteins, PAL functions as a tetramer,
similar to HAL in vivo. Presumably, PAL developed from
HAL when fungi and plants diverged from the other
kingdoms [7,25].

Nelumbo nucifera (Nelumbo, Nelumbonaceae) (2n = 16)
is a perennial aquatic plant with ornamental flowers of
medicinal and phylogenetic importance. N. nucifera pro-
duces a series of important secondary metabolites, includ-
ing alkaloids, flavonoids, steroids, triterpenoids, glycosides
and polyphenols [26]. The N. nucifera secondary metabo-
lites have a wide range of medical functions and also play
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important roles in the response to environmental stress,
such as pathogen attack and ultraviolet damage. For ex-
ample, it has been reported that benzylisoquinoline alka-
loids and flavonoids from the leaves of N. nucifera are a
potential candidate for HIV therapy [27]. Nelumbo has
survived since the Late Cretaceous, along with a number
of other relicts, including Ginkgo, Sequoia, Metasequoia,
and Liriodendron [28]. It remains to be determined the
mechanism by which PAL evolution has allowed N. nuci-
fera to adapt to harsh environmental stress. Along with
the N. nucifera genome project [29,30], high-throughput
sequencing data will provide a foundation for identifying
the key genes in metabolic pathways. However, related re-
search for N. nucifera is very limited.

In this study, three intact PAL genes in N. nucifera,
NnPALI, NnPAL2 and NnPAL3 are identified by genome-
wide analysis. NnPALI is an ancient PAL member in an-
giosperms. The objective of this study is to determine the
evolutionary origin, gene structure, function, and expres-
sion patterns of this gene under stress conditions.

Results

Genomic identification and exon/intron structure analysis
of the PAL gene family in N. nucifera

Based on whole genome sequences of N. nucifera, data
mining using 4 Arabidopsis thaliana PAL homologues,
AtPALI, AtPAL2, AtPAL3 and AtPAL4, as queries identify
three intact PAL genes, NnPAL1, NnPAL2 and NnPAL3
(Additional file 1: Figure S1). NnPALI, NnPAL2, and
NnPAL3 are located on separate virtual chromosomes,
Vchr3, Vchr2 and Vchr7, respectively. According to the
position of the introns, these genes are divided into the
following three types: phase O (introns between codons),
phase 2 (introns between the first and the second bases of
a codon) and phase 3 (introns between the second and the
third bases of a codon). NnPALI has two introns of phase
0, whereas NnPAL2 and NnPAL3 have only one intron of
phase 2 (Figure 1). In NnPAL2 and NnPAL3, the exon/
intron borders are within a conserved arginine codon
(AG/A). The introns of NnPAL2 and NnPAL3 are sepa-
rated by two exons. The first exon of NnPAL2 encodes
136 amino acids, whereas the first exon of NuPAL3 en-
codes 130 amino acids. However, two introns split
NnPALI into three exons, which code for 363, 179 and
175 amino acids, respectively (Additional file 1: Figure S1).
Except for NnPALI, the phase 2 intron of NnPAL2 and
NnPAL3 is conserved, similar to other angiosperms dur-
ing the evolution of angiosperms [31]. A phase 0 intron in
NnPALI indicates that NuPALI has an evolutionary origin
different from NnPAL2 and NnPAL3.

Using BLASTP to search the protein database in
NCBI, we found that NuPALI is more similar to the
PAL genes of gymnosperms (73% identity to GbPAL,
ABU49842.1; 72% identity to PmPAL, ACS28225.2; and
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Figure 1 Gene structure of the PAL family, NnPAL1, NnPAL2 and NnPAL3, in Nelumbo nucifera. The green bars represent exons, and the
red bars represent the conserved nucleotide sequences encoding the phenylalanine and histidine ammonia-lyase signature (GTITASGDLVPLSYIA).
The black lines represent introns. The numbers 0, 1 and 2 represent the intron phase.

69% identity to EsPAL, BAG74771.1) than dicots (63%
BnPAL, ABC69916.1; 64% AtPAL NP_181241.1; and 63%
DcPAL, BAC56977.1) (Additional file 2: Figure S2). This
is contrary to the phylogeny of N. nucifera in the plant
kingdom [32]. However, the deduced NnPAL1 protein
has the same nine strictly conserved residues, Y112,
1.140,5204,N260,Q348,Y351,R354,F400, and Q488, that
are found in PcPAL of Petroselinum crispum [33]. A typ-
ical phenylalanine and histidine ammonia-lyase signature
(GTITASGDLVPLSYIA) also exists at position 199-214
(Additional file 3: Figure S3).

Evolutionary analysis of NnPAL1 in N. nucifera

To understand the evolutionary process of NnPALI, we
use four PAL members, AtPALI, AtPAL2, AtPAL3 and
AtPAL4, from Arabidopsis thaliana to query the Phyto-
zome database. Five monocots and seven dicots that are
uniformly distributed in the species tree are selected for
analysis (Table 1). Intact PAL amino acids sequences
from Pinus taeda are deduced from their transcripts
(Additional file 4: Figure S4), and PAL sequences from
Physcomitrella patens (Bryophyta) are selected as an out-
group. On the amino acid level, the PAL phylogenetic
trees are constructed using the ML (Figure 2), NJ and BI
methods (Additional file 5: Figure S5), simultaneously.
Five different PALs from Pinus taeda, including Pteda9006,
Ptedali43311, Ptedal7307, Pteda28316 and Pteda34319,
are grouped into three clades as follows: Pteda9006 belongs
to Gymnosperm I, Ptedal143311 and Ptedal7307 belong
to Gymnosperm II, and Pteda28316 and Pteda34319 be-
long to Gymnosperm III, reported previously [34]. Except
for NnPALI, the other analysed PALs of the dicots and
monocots, including NnPAL2 and NnPAL3, are placed in
separate monophyletic groups with high bootstrap values of
98 for ML and 94 for NJ and a posterior probability value

1.0 for BI (Figure 2 and Additional file 5: Figure S5). As a
PAL in N. nucifera, the NnPALI gene is clustered together
with Ptedal143311 and Ptedal7307 (Gymnosperm II) with
high bootstrap and high probability values (Figure 2 and
Additional file 5: Figure S5). Therefore, the PAL of angio-
sperms may not be derived from a single paralogue of a
gymnosperm PAL. Except for NnuPALI, the PAL clusters
from the dicots and monocots are monophyletic after the
split between dicots and monocots. This phenomenon sug-
gests that duplication events are an important occurrence
during the evolution of the PAL gene family after the split
between dicots and monocots [35]. However, the discovery
of NnPALI indicates that a different evolutionary origin
may be responsible for the evolution of the angiosperm
PAL genes.

Isolation and bioinformatics characterisation of the
full-length NnPAL1 cDNA in N. nucifera
NnPALI has a unique gene structure and phylogenetic pos-
ition. To determine whether NnPALI became a pseudo-
gene during evolution, isolation of the full-length NnPALI
c¢DNA is performed from the transcripts of tender leaves.
The partial cDNA is obtained by DOP-PCR with degener-
ate primers. A full-length cDNA containing an open read-
ing frame of 2151 bp is then produced using 5'-RACE and
3'-RACE. Using BLASTN to search the whole genome se-
quence of N. nucifera, we confirm that the newly cloned
ancient PAL gene exactly matched the NnPALI sequence.
Utilising the ExPASy tool (http://www.expasy.org), the
resulting ¢cDNA is determined to encode 717 amino
acids with a calculated molecular mass of 77.8 kDa and
a theoretical isoelectric point (pI) of 6.64. Additionally,
PROSITE (http://prosite.expasy.org/) is used to identify
possible posttranslational modification sites, including
eight casein kinase II phosphorylation sites, ten protein
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Table 1 Identification of the PAL gene family from the

Phytozome database in this study

Species PAL seq ID
Bryophyta
Physcomitrella patens (10) Pp1s22_3V6.1

Gymnosperm

Pinus taeda (5)

Monocotyledons

Brachypodium distachyon(6)

Oryza sativa (9)

Sorghum bicolor(6)

Setaria italica (6)

Zea mays (11)

Dicotyledons

Nelumbo nucifera (3)

Aquilegia coerulea (2)

1
Pp1s32_311V6.1
Pp1s36_253V6.1
Pp1s5_197V6.1
Pp1s20_305V6.1
Pp1s494_3V6.1
Pp1s500_4V6.1
Pp1s43_88V6.1
Pp1s43_67V6.1
Pp1s52_44V6.1

Pteda1143311
Pteda17307
Pteda9006
Pteda28316
Pteda34319

Bradi5g15830.1
Bradi3g48840.1
Bradi3g47120.1
Bradi3g49260.1
Bradi3g49270.1
Bradi3zg49250.2

0s02g41630.2
0s02g41650.1
0502g41670.1
0s502g41680.1
0s504g43760.1
0s04g43800.1
0s05935290.1
Os11g48110.1
0s12g33610.1

Sb04g026520.1
Sb04g026560.1
Sb04g026510.1
Sb06g022740.1
Sb06g022750.1
Sb01g014020.1

Si016478m Si016504m
Si016467m Si009345m
Si009509m Si012256m

GRMZM2G441347_T01
GRMZM2G118345_T01
GRMZM2G447436_T01
GRMZM2G063917_T01
GRMZM2G160541_T01
GRMZM2G081582_T01
GRMZM2G326335_T01
GRMZM2G334660_T01
GRMZM2G170692_T01
GRMZM2G074604_T01
GRMZM2G029048_T01

NnPALT NnPAL2
NnPAL3

Aquca_030_00132.1
Aquca_087_00007.1
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Table 1 Identification of the PAL gene family from the
Phytozome database in this study (Continued)

Arabidopsis thaliana (4) AT2G37040.1(AtPALT)
AT3G53260.1 (AtPAL2)
AT5G04230.2
(AtPAL3)

AT3G10340.1

(AtPAL4)

Cucsa.124460.
Cucsa.124480.
Cucsa.124470.
Cucsa.124500.
Cucsa.124490.
Cucsa.385970.
Cucsa.124510.
Cucsa.137590.

Glyma13g20800.1
Glyma03933880.1
Glyma02g47940.1
Glyma20932135.1
Glyma10g35381.1

mgv1a001582m
mgv1a019971m
mgv1a002104m

Potri.010G224200.1
Potri.010G224100.1
Potri.006G126800.1
Potri.008G038200.1

GSVIVT01024306001
GSVIVT01016257001
GSVIVT01024292001
GSVIVT01025214001
GSVIVT01024294001

1

1

1

1

1

Cucumis sativus (8)

Glycine max (5)

Mimulus guttatus (3)

Populus trichocarpa (4)

Vitis vinifera (10)

GSVIVT01024305001
GSVIVT01024315001
GSVIVT01025703001
GSVIVT01024295001
GSVIVT01024293001

Note: The PAL gene family identified from one Bryophyta (Physcomitrella
patens), one gymnosperm (Pinus taeda), five monocotyledons (Brachypodium
distachyon, Oryza sativa, Sorghum bicolor, Setaria italica, Zea mays) and eight
dicotyledons (Nelumbo nucifera, Aquilegia caerulea, Arabidopsis thaliana,
Cucumis sativus, Glycine max, Mimulus guttatus, Populus trichocarpa,

Vitis vinifera).

kinase C phosphorylation sites, fifteen N-myristoylation
sites, three N-glycosylation sites, two tyrosine kinase phos-
phorylation sites and one cAMP- and cGMP-dependent
protein kinase phosphorylation site. The TMHMM Server
2.0 (http://www.cbs.dtu.dk/services/ TMHMM-2.0/) is used
to show that the deduced NnPALI protein is translated and
located in the intracellular matrix. The SOPMA tool
(http://pbil.ibcp.fr/htm/index.php) is used to predict the
secondary structure of the NnPAL1 protein, and indicates
that NnPAL1 predominantly consists of alpha helices
(57.32%) and random coils (30.40%), along with sheets
(7.11%) and beta turns (5.16%) (Figure 3A).

Based on the crystal structure of PcPAL (1 W27), the
SWISS-MODEL software is used to predict the three-
dimensional structure of the NnPAL1 protein. The re-
sult indicate that NnPAL1 comprises an MIO domain,
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Figure 2 Phylogenetic tree of the phenylalanine ammonia lyase gene family. The amino acid sequences are aligned and the maximum
likelihood tree as constructed using the program PhyML 3.0. The numbers at the nodes are the bootstrap values (>50%) from the maximum
likelihood (ML). The other Bl and NJ trees are shown in Additional file 5, Figure 5(A) and Figure 5(B). The numbers associated with the branches
are the ML bootstrap support values and posterior probabilities. NnPALT is marked with a red dot, and the dicotyledon and monocotyledon
clades are marked with carmine and green dots, respectively. Three clades, gymnosperm |, gymnosperm Il and gymnosperm |lI, of Pinus taeda are

marked with light green, pink and blue dots, respectively.

core domain and shielding domain [20]. Moreover, a
highly conserved Ala-Ser-Gly triad [7] that can be con-
verted autocatalytically is also identified within NnPAL1
(Figure 3B). The results of the bioinformatics prediction
and structural analysis of NnPAL1 indicate that NnPAL1
has similar structural features to the reported angiosperm
PAL proteins.

Purification and functional characterisation of
recombinant NnPAL1

To confirm the expression of NnPALI, the recombinant
(His)s-tagged protein is heterogeneously produced in
E. coli BL21 (DE3) and eluted with a series of imidazole
buffers (Figure 4B). The size of the expressed and purified
recombinant (His)s-NnPALI1 protein is confirmed as ~81 kDa
by SDS-PAGE (Figure 4A), which is consistent with the
predicted mass of NnPAL1 (~78 kDa) combined with a
His tag (~3 kDa). Compared to the production at 4 h
and 12 h, the recombinant NnPAL1 (~81 kDa) is

expressed maximally at 8 h. The optimal elution concen-
tration of the imidazole buffer is 200 mM. The recombin-
ant NnPAL1 protein has both PAL and TAL activities
simultaneously, although phenylalanine ammonia-lyase
from dicots only utilises Phe efficiently [33]. A study of
the physicochemical properties shows that its optimal pH
and temperature are pH 9.0 and 55°C, respectively. The
NnPAL1 K, values for L-phenylalanine and L-tyrosine are
1.07 mM and 3.43 mM, respectively.

Expression profile of NnPAL1 under stress conditions

Because of the accumulation important secondary metab-
olites, such as alkaloids and flavonoids, these phenylpro-
panoid compounds from N. nucifera leaves play essential
roles in stress resistance. PAL is vital to the phenylpropa-
noid pathway that leads to the production of these
secondary metabolites. The upstream cis-elements of
NnPAL1 (Additional file 1: Figure S1), including the re-
lated regulatory elements, such as the MYB binding

b I

MIO domain

3 core domain

Figure 3 Prediction of NnPAL1 secondary structure and tertiary structure. (A) Prediction of the NnPAL1 secondary structure. The blue, pink,
red, and green regions represent the alpha helix, random coil, extended strand, and beta turn, respectively. (B) The three domains of the
predicted tertiary structure of NnPAL1 established by homology-based modelling (9 strictly conserved residues are marked).
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Figure 4 Expression (A) and purification (B) of recombinant NnPAL1. A: The total proteins from £. coli BL21 are harvested at 4 h, 8 h and

12 h after post-induction, and 1 and 2 represent the total proteins of £ .coli BL21 harbouring the pET28a(+) vector and recombinant pET28a
(+)-NnPAL1 vector, respectively. B: A series of imidazole buffer concentration gradients (10 mM, 50 mM, 100 mM, 200 mM); lane1: the supernatant
of the E. coli BL21 lysate harbouring the pET28a(+) vector; lane2: (native control) the supernatant of the £. coli BL21 lysate harbouring the pET28a
(+)-NnPAL1 vector; lane3: the supernatant of the flow through of the Ni-IDA column for three replicates; lane 4, lane 5, lane 6, lane 7 and lane 8:
the products washed with 10 mM, 20 mM, 50 mM, 100 mM, and 200 mM imidazole buffer, respectively.

‘|'|°’1

site involved in drought-inducibility (CAACTG), auxin-
responsive element (AACGAC), fungal elicitor responsive
element (TTGACC), cis-acting element involved in
abscisic acid responsiveness (CACGTG), and light re-
sponsive element (CACGTG, CACGAC, CACGTG) are
identified. Under different stress conditions, including
ABA (250 pM abscisic acid), IAA (100 ng/ml), ultravio-
let light, Neurospora crassa (fungi) and drought, the ex-
pression of NnPALI is induced in N. nucifera leaves
(Figure 5A-E). After 4 hours, PAL expression is max-
imal with ABA, IAA, ultraviolet light and Neurospora
crassa (fungi), and after 8 hours, PAL expression is
maximal with drought treatment. We conclude that these
corresponding elements perform an important role in the
response to internal and external environmental stimulus.

Discussion

Identification of the PAL family in N. nucifera from whole

genomic sequences

The genomic DNA used for de novo sequencing is extracted
from the clean shoots of N. nucifera. We use sixteen assem-
bled virtual chromosomes of high quality as the resource for
the PAL search. In previous reports of PAL from higher
plants, all functionally identified PAL genes [13-23] encode
approximately 700 amino acids and contain the characteris-
tic conserved GTITASGDLVPLSYIA motif. Therefore, we
set the sizes of the PAL family to larger than 500 amino
acids with the GTITASGDLVPLSYIA signature. Three PAL
genes, NnPAL1, NnPAL2 and NnPAL3, are located in the
well-defined regions of the assembled sequences. Consistent
with the phylogeny of angiosperms, NnPAL2 and NnPAL3
are similar to the PAL from dicots. However, NuPALI is
similar to the PAL from gymnosperms. The full-length
c¢DNA of NnPALI is cloned from the RNA transcripts of
tender leaves using RACE method. NnPALI is transcribed

with an intact open reading frame, suggesting that it does
not become a pseudogene during evolution.

NnPAL1 from the genuine PAL family of N. nucifera
N. nucifera is a perennial aquatic plant. Therefore, obtaining
pure tissues is a prerequisite for molecular biology experi-
ments. An endophyte is a bacterial or fungal microorgan-
ism, which colonises inter- and/or intracellularly inside the
healthy tissues of the host plant [36]. We are careful to re-
move the residues from both shoots and leaves. To confirm
that NnPALI is a member of the PAL family of N. nucifera
and not endophytes, we performed several experiments.
First, we determine the location of NuPALI in Vchr3
and extract the upstream sequence (31,942 bps) and
downstream sequence (26,288 bps) flanking NnPALI
(Additional file 6). Then, we performed a discontiguous
megablast search against the nucleotide collection data-
base in NCBI to search for homologous regions. In the
upstream 1-5000 bps of NuPALI, we find out a highly
homologous region to dicots. The sequences with the
first three highest scores are uncharacterised mRNA from
Vitis vinifera, the mRNA of a tetratricopeptide repeat-
containing family protein in Populus trichocarpa, and
an mRNA of a conserved hypothetical protein in Ricinus
communis. In the downstream 10,000-15,000 bps of
NnPALI, we find out a homologous partial coding se-
quence of the GWD gene for alpha-glucan water dikinase
from N. nucifera. A homologous region to dicots is also
identified in the downstream 20,000-25,000 bps. The se-
quences with the first three highest scores are the mRNA
of a zinc finger CCCH domain-containing protein 17-like
in Citrus sinensis and the mRNA of a zinc finger family
protein in Populus trichocarpa (Additional file 7). As a
basal dicot, the flanking sequences of N. nucifera NnPALI
show homology to sequences of all the other dicots.
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Figure 5 Transcription of NnPAL1 under different treatments. A 250 uM ABA, B 100 ng/ml IAA, C ultraviolet light treatment, D Neurospora
crassa (fungi) treatment, E drought treatment. The leaves obtained from the treated seedlings of N. nucifera are used as samples. 3-actin is used
as an internal control for all samples. The vertical bars represent the means + SE (n = 3 replicates, SE < 0.5).




Wu et al. BMC Evolutionary Biology 2014, 14:100
http://www.biomedcentral.com/1471-2148/14/100

Second, the identities between plant PALs and HALs
and the PALs of microorganisms and animals are com-
pared. Because PAL has the same catalytic mechanism
as HAL, it is hypothesised to have developed from HAL
when fungi and plants diverged from the other king-
doms. HAL is widely distributed among prokaryotes and
animals. We extracted the prokaryote and animal HALs,
and only one prokaryote, Streptomyces, and fungal PAL
from NCBI the database are identified in addition to the
plant PAL from our study. The identities of plant PAL to
the prokaryote and animal HAL, Streptomyces PAL, fun-
gal PAL, and plant PAL are approximately 18%, 18%,
25% and 64%, respectively (Additional file 8). The con-
clusion that there are significant sequence difference
among these PALs and HALSs is consistent with a previ-
ous report [20]. Similar to the other plant PALs, the se-
quence of NnPALI1 is much more similar to other plant
PALs, and distant from the PALs and HALs of microor-
ganisms. Phylogenetic analysis of HAL and PAL using
the neighbour-joining method demonstrates that they
form three separate clades, prokaryote and animal HAL,
including Streptomyces PAL, fungal PAL, and plant PAL
(Figure 6). Therefore, NnPALI is not from the endo-
phytes. Based on these results, we can infer that NnPALI
is a genuine member of the PAL family from N. nucifera,
but not endophytes.

Evolution of NnPAL1 in N. nucifera during the evolution
of plants

In this study, three PALs, NnPALI, NnPAL2 and NnPAL3,
are identified using the database of whole genomic se-
quences as a resource. In previous reports, the angiosperm
PAL had phase 2 introns at an Arg codon of [15,31,37,38],
but the gymnosperm PAL had no intron [13]. Similarly,
both NnPAL2 and NnPAL3 have only one intron of phase
2, whereas NnPALI has two introns of phase 0. This result
demonstrates that NnPALI has unique gene structure that
is different from NnPAL2, NnPAL3 and other PAL genes
from angiosperms. This difference between NnPALI and
other angiosperm PALSs suggests that it is an ancient gene
with a different evolutionary origin.

PAL and HAL are members of the lyase class I_like
superfamily of enzymes, which catalyse similar beta-
elimination reactions and are active as homotetramers.
PAL and HAL diverged from each other when fungi and
plants diverged from the other kingdoms (Figure 6). Be-
cause of their similar structures, PAL is derived from the
His ammonia-lyase. HAL is a basic enzyme, participating
in a central metabolic pathway, and PAL is derived from
HAL to fulfil specific functions.

PAL is a ubiquitous higher-plant enzyme that catalyses
the nonoxidative deamination of phenylalanine to trans-
cinnamic acid. However, the origin and evolution of the
PAL gene family in seed plants (Spermatophyta) have not
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been determined [31,39]. Currently, two major mecha-
nisms are responsible for the evolution and functional di-
vergence of genes. One evolutionary mechanism is called
HGT (horizontal gene transfer) and refers to the move-
ment of genes between different species [40]. HGT events
occur only in plant mitochondrial genes [41-43], and rarely
in nuclear genes [44]. The other evolutionary mechanism
is gene duplication, which is the main mechanism for evo-
lutionary innovations and functional divergence [45]. Based
on morphological characteristics and molecular data, gym-
nosperms are considered ancestral to the angiosperms
[39]. At least three ancestral duplication events of PAL oc-
curred, leading to three clades of gymnosperm PAL genes,
gymnosperm-I, gymnosperm-II and gymnosperm-IIL. It
appears that angiosperms diverged from gymnosperm III
when only one paralogue PAL gene is retained within the
angiosperms [31]. In this study, we construct PAL phylo-
genetic trees that include the PAL gene families from Pinus
taeda (gymnosperm I, II, III), monocots and dicots accord-
ing to the gene sequences of the sequenced species
(Figure 2 and Additional file 5: Figure S5). The phylogen-
etic trees show that NnPALI is clustered together with
Ptedal143311 and Ptedal7307 (gymnosperm II); however,
NnPAL2 and NnPAL3 are clustered with dicots with
high bootstrap and posterior probability values. Per-
haps, NnPAL1 has a different evolutionary origin from
NnPAL2 and NnPAL3. Except for NnPALI, the other
PAL clusters are monophyletic after the split between
dicots and monocots (Figure 2 and Additional file 5:
Figure S5). However, the PAL from one species is clus-
tered together with the other species rather than with a
single species. This result indicates that duplication
events are important in the evolution of PAL genes
after the split between dicots and monocots [46,47].

During evolution, NnPALI is found to be an ancient mem-
ber of the PAL family that has been retained in angiosperms.
A different evolutionary history for PAL genes in angio-
sperms suggests different mechanisms of functional
regulation. In the phylogenetic trees of PAL (Figure 2),
NnPALI is not found where expected. Interestingly,
NnPALI shows high homology to Ptedall43311 and
Ptedal7307 from Pinus taeda, and Pinus taeda is also
rich in various secondary metabolites. There may be a
shared secondary metabolite produced by NuPALI or
Ptedal143311 and Ptedal7307. Moreover, this specific
product may protect N. nucifera and Pinus taeda from
similarly extreme environments. NnPALI may have
been essential for N .nucifera to survive in harsh envi-
ronments during the Cretaceous period.

We speculate that the angiosperm PAL is not of
monophyletic origin. Ancestral gene duplication and ver-
tical inheritance from gymnosperms may occur during
evolution from parent to offspring. In gymnosperms an-
other paralogue of the ancient PAL exists that is retained
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Figure 6 Phylogenetic tree of the phenylalanine ammonia lyase from prokaryote and animal HAL, fungal PAL and plant PAL.

prior to the formation of angiosperms. NuPALI may be  activities of NuPALI show higher K,, values, which can be
derived from the product of gymnosperm-II PAL. Dis- explained as follows: (I) during the evolution of angio-
covering a functional NnPALI indicates that angiosperm  sperms, the function of the most ancient PAL (NnPALI) is
PAL genes are not derived from a single gene in the gradually replaced by a new PAL; (II) NnPALI has many
ancestral angiosperm genome. However, similar modifi-  posttranslational modification sites, which may be in-
cation sites and structure to other angiosperm PALs volved in the subunit turnover of NnPALI in vivo [48],
suggest that NnPALI can catalyse the deamination of and prokaryote expression systems lack multiple protein
phenylalanine to trans-cinnamic acid and is involved in  modifications, which affect enzyme protein stability; and

the phenylpropanoid pathway. (IIT) the ancient NnPALI has evolved a novel function re-

quired for other metabolic pathways [49]. The optimum
Functional characterisation and expression patterns of pH is 9.0 and the optimum temperature is 55°C, which is
NnPAL1

similar to other PALs from higher plants [18]. The expres-
During evolution, NnPALI remained functional with both  sion patterns are validated by real-time PCR. In response

PAL and TAL activities. Compared with other PALs to environmental stress during the Cretaceous period, N.
cloned from other plants [14,18], both the PAL and TAL  nucifera is eventually trapped in aquatic areas of Asia [50].
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This type of environment makes secondary metabolites
important for N. nucifera because they protect the species
from various stimuli. PAL expression is regulated by vari-
ous factors at the transcriptional level. Bioinformatics ana-
lysis of the upstream cis-elements in NnPALI identified
several related regulatory elements, such as the MYB
binding site involved in drought-inducibility, the auxin-
responsive element (IAA), the fungal elicitor responsive
element, the cis-acting elements involved in abscisic acid
responsiveness (ABA), and the light responsive element in
NnPALI gene. All the treatments used in this study cause
increases of the NnPALI transcripts, which suggests that
NnPALI is regulated by these elements. The ancient
NnPAL1 of N. nucifera is involved in the response to
stressful environments, which makes N. nucifera the rep-
resentative of plants that survived from the Cretaceous
period [28].

Conclusions

Using comparative genomics and phylogenetic analyses,
three PAL members, NnPALI, NnPAL2 and NnPAL3, are
identified. The distinction between NnPALI and other
angiosperm PALs suggests that NuPALI is not derived
from a PAL paralogue of a gymnosperm leading to angio-
sperms. We postulate that there may be another ancestral
duplication event and vertical inheritance from the gym-
nosperms. The ancient PAL NnPALI from N. nucifera is
characterised at both the RNA and protein levels in vitro.
The unique biochemical characteristics of N. nucifera may
allow it to overcome the harsh environment. Additionally,
as a basal dicot, N. nucifera is a perennial aquatic plant
with agricultural, evolutionary and medicinal importance
[26,27]. Polyphenolic compounds in N. nucifera have im-
portant pharmacological and physiological activities. The
discovery and characterisation of an ancient NnPALI pro-
vides new insight into PAL evolution in angiosperms and
may also lead to improved function through the genetic
engineering of N. nucifera.

Methods

Identification of the PAL gene family in N. nucifera

High purity DNA is extracted from clean and tender
shoots of N. nucifera, and is used for de novo sequen-
cing. For the de novo assembly, 16.4 Gb of filtered data
with 15-fold depth is used. Sixteen virtual chromosomes
(2n = 16) are assembled with high quality.

We search the orthologues in N. nucifera against the
whole genome using four Arabidopsis PAL homologs,
AtPALI, AtPAL2, AtPAL3, and AtPAL4. The search cri-
teria are as follows:

1) A local database with the sequences of sixteen
virtual chromosomes are constructed on the
Bio-Linux platform;
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2) tBLASTN is conducted with a cut-off E value of
1e-20 in the local database with each member of the
AtPAL family;

3) the aligned frames containing a highly conserved
phenylalanine and histidine ammonia-lyase signature
(GTITASGDLVPLSYIA) are selected for further analysis;

4) the related genome sequences with intact open
reading frames are located in the well-defined region
of assembled sequences and are extracted;

5) the extracted codes larger than 500 amino acids are
selected and annotated.

Identification of gene families in other plants and
construction of the PAL phylogenetic tree

Based on a conserved phenylalanine and histidine ammonia-
lyase signature, the PAL families from other plants
except for Pinus taeda are identified and downloaded
from Phytozome (http://www.phytozome.net) with a cut-
off E value of 1e . The PAL proteins from Pinus taeda are
deduced from their RNA transcripts [34]. The analysed spe-
cies (Table 1) are as follows: one Bryophyta (Physcomitrella
patens), one gymnosperm (Pinus taeda), five monocotyle-
dons (Brachypodium distachyon, Oryza sativa, Sorghum
bicolor, Setaria italica, Zea mays), and eight dicots (Aquile-
gia caerulea, Arabidopsis thaliana, Cucumis sativus, Gly-
cine max, Mimulus guttatus, Populus trichocarpa, Vitis
vinifera, and Nelumbo nucifera). The protein sequences are
aligned with the CLUSTALW program [51] with manual
adjustments. The phylogenetic trees are simultaneously in-
ferred from the protein alignment using three methods as
follows: the NJ (Neighbour-joining) tree with the JTT
model, the ML (maximum likelihood) tree with LG model,
and BI (Bayesian inference) tree with the GTR model, are
generated with Mega 5 [52], PhyML 3.0 [53] and Mrbayes
3.2 [54], respectively. The bootstrap values are set 1000 for
the neighbour-joining and maximum likelihood tree. For
Bayesian inference, we sample every 10 generations for
300,000 total generations on two independent parallel runs
of the Monte Carlo Markov Chains. Then, the average
standard deviation of the split frequencies is calculated to
check the convergence of the two runs.

Plant material, cloning and expression vectors

N. nucifera mature seeds are harvested from East Lake
of Wuhan, China. The tender leaves are collected when
the seedling germinated from seeds in the greenhouse.
E.coli top10 (TaKaRa, Dalian, China) is used as the host
for plasmid pMD18-T vector (TaKaRa, Dalian, China)
amplification. E.coli BL21(DE3) is selected as the host
for pET-28a(+) expression vector.

Isolation of the full-length NnPAL1 cDNA
The total RNA is isolated from the leaves using a modi-
fied CTAB method [55]. The first strand cDNA is
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produced by RT-PCR using reverse transcriptase (MBI
Fermentas). Two degenerate primers, (Nf-F) 5'-GCNTC
NGGHGAYYTDGTBCC-3' and (Nf-R) 5-ARNCCBA
RDGART TWACATC-3’, are designed according to the
highly conserved regions of the plant PAL for both the
amino acid and nucleotide sequences. The partial cDNA
of PAL is amplified using the following conditions: initial
denaturing at 94°C for 4 min, followed by 35 cycles of
94°C for 40 s, 59°C for 40 s, and 72°C for 80 s, with a
final extension at 72°C for 10 min. The target fragment
is checked on 1% agarose gel and purified with a Gel Ex-
traction Kit (BioDev-Tech, Beijing, China). The purified
products are then ligated into the pMD18-T Easy vector
(TaKaRa, Dalian, China), transformed into competent E.
coli Topl0 and sequenced on an ABI 3730.

The full-length ¢cDNA of the PAL gene is isolated by
3’- and 5-RACE using the RACE Kit (TaKaRa, Dalian,
China). Based on the sequenced DNA fragment, four
gene-specific primers, 3'GSP1 (5'-CTGGACTACGGAT
TCAAGGGTG-3"), 3'GSP2 (5'-TCAGTATTTGGCAA
ACC CAGTCA-3"), 5'GSP1(5'-AGCATCACTTCGCA
GAACATCG-3") and 5'GSP2 (5'-GTACGGAC CTTGG
AGTTGGGAC-3’), are designed for the 3'- and 5'-
RACE experiments, respectively. A 860-bp fragment and
791-bp fragment are then obtained by 3'-RACE and 5'-
RACE, respectively. The full-length coding cDNA of the
2154-bps is amplified and sequenced using two gene-
specific primers, 5 -GAATTCATGGTTGCAGGGGCC
GAGATAG-3" and 5'-CCCTCGAGCACAAGAAGGCA
ACACCAAAGT-3".

Bioinformatics analysis of NnPAL1

The amino acid sequence and protein analysis of
NnPALI are performed with the ExPASy tools (http://us.
expasy.org/tools) and NCBI server (http://www.ncbi.
nlm.nih.gov/). The possible posttranslational modifica-
tion sites are predicted by PROSITE (http://prosite.
expasy.org/). The prediction of secondary structure and
trans-membrane helices in the PAL protein are per-
formed with SOPMA (http://pbil.ibcp.fr/htm/index.php)
and the TMHMM Server v. 2.0 (http://www.cbs.dtu.dk/
services/TMHMM-2.0/), respectively. Homology model-
ling is performed with Swiss-Model (http://swissmodel.
expasy.org/) and is based on the PAL crystal structure
from Petroselinum crispum [20].

Expression of NnPAL1 in E. coli

Primers NnPl (5'-GAATTCATGGTTGCAGGGGCCG
AGATAG-3’, the italics is EcoRI restriction site) and
NnP2 (5'-CCCTCGAGCACAAGAAGGCAACACCAA
AGT-3’, the italics is Xhol restriction site) are used to
amplify the NnPALI gene coding sequence. The PCR
products are digested with EcoRI and Xhol and then inserted
into pET28a(+) expression vector. The recombinant plasmid
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NnPAL1-pET28a(+) is transformed into the BL21 strain
and sequenced to confirm the correct ORF of NnPALI.

The transformant with the correct NnPAL1-pET28a
(+) is selected and cultured in Luria—Bertani (LB)
medium containing 50 pg/ml kanamycin at 37°C until
the ODgg reached 0.6. Protein expression is induced
with 0.5 mM isopropyl [-D-1-thiogalactopyranoside
(IPTG) at 16°C for 12 h. The recombinant proteins are
purified on a Ni-NTA agarose column and eluted with a
step gradient of imidazole buffers (10 mM, 50 mM,
100 mM, and 200 mM). The purity of the recombinant
protein is verified by SDS-PAGE. The 200 mM fractions
are dialysed with Spectra/Por Membranes (MWCO:
8,000-14,000) in dialysis buffer.

Enzyme activity assay for the recombinant NnPAL1 protein
The protein concentrations are determined with the G250
dye-binding method [56] using bovine serum albumin as
the protein standard. The enzyme activity of the recom-
binant NnPAL1 is assayed by measuring the trans-
cinnamic acid formation at 290 nm [57] and p-coumaric
acid formation at 310 nm [9]. The PAL activity and TAL
activity is expressed in nkat (nanomole of trans-cinnamic
acid/p-coumaric acid formed per second).

To determine the optimum temperature and optimum
pH for enzyme activity, several assays are performed at
pH 8.5 for 30 min at varying temperatures (4, 23, 30, 37,
45, 50, 55, 60, 70, 80 and 90°C), and at 37°C for 30 min
with buffer of various of pH (5, 6, 7, 7.5, 8, 8.5, 9, 10,
11), respectively. The reactions are performed in 150 pl
reaction mixtures with 6 pg recombinant NnPALL,
15 mM L-phenylalanine and 50 mM Tris—HCl (pH 8.5),
and are terminated with the addition of concentrated
HCI [57].

To determine the kinetic parameters and substrate spe-
cificity, 150 pl reaction mixtures containing 6 pg recom-
binant NnPALI1 proteins, 50 mM Tris—HCI (pH 8.5) and
a range of L-phenylalanine (0.15-15 mM) or L-tyrosine
(0.3-2 mM) concentrations are used. Hyperbolic plots and
double reciprocal plots (Lineweaver—Burk plot) are used
to calculate the K, (Michaelis-Menten constant) using
the Michaelis-Menten equation [35].

Cis-regulatory element analysis and expression of

NnPAL1 by quantitative real-time PCR

The 5" upstream region of NuPALI is characterised using
BLASTN against the whole genomic sequence of N. nuci-
fera with NnPAL1 gene. We predicted the cis-elements by
submitting 5’ fragment to PlantCARE (http://bioinformat-
ics.psb.ugent.be/webtools/plantcare/html/).

Two-week-old leaves are treated with 250 uM abscisic
acid (ABA), 100 ng/ml IAA, ultraviolet light, Neurospora
crassa (fungi) and drought according to the cis-elements.
The treated leaves are harvested and immediately frozen
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after 0, 4, 8, and 12 h. The total RNA is isolated from the
leaves and treated with RNase-free DNase I to avoid DNA
contamination. Real time RT-PCR analysis of NnPALI is
performed on an Applied Biosystems StepOne Plus, using
p-actin  gene (B-actin-F: 5'-CCTGATGGGCAAGTGA
TT-3', B-actin-R: 5'-GCTCATACGGTCAG CAATA-3’)
as an internal control for all the samples.

Additional files

Additional file 1: Figure S1. Nucleotide sequences of NnPALT, NnPAL2
and NnPAL3, upstream cis-elements of NnPALT identified from the whole
genome sequences of Nelumbo nucifera.

Additional file 2: Figure S2. Sequences alignment of NnPALT and
other typical PALs from seed plants. The phenylalanine and histidine
ammonia-lyase signature (GTITASGDLVPLSYIA) is underlined with red
lines, and the conserved Ala-Ser-Gly triad is framed in a red box.

Additional file 3: Figure S3. The nucleotide sequence and deduced
amino acid sequence of NnPALT. The start codon (ATG) and stop codon
(TAA) are underlined. The typical phenylalanine and histidine ammonia-lyase
signature is boxed. Nine strictly conserved residues, Y112,L140,5204N260,Q348,
Y351,R354,F400,0488, are marked in red italics.

Additional file 4: Figure S4. Deduced amino acid sequences from the
PALs of Pinus taeda.

Additional file 5: Figure S5. Phylogenetic trees of the phenylalanine
ammonia lyase gene family constructed using the Bl method (a) and NJ
method (b). The posterior probability and bootstrap values (>50%) for the
two trees are shown on each branch, respectively.

Additional file 6: Identification of the upstream sequence
(31,942 bps) and downstream sequence (26,288 bps) of NnPAL1.

Additional file 7: Homology search for the upstream sequence
(31,942 bps) and downstream sequence (26,288 bps) against the
nucleotide collection database in NCBI.

Additional file 8: Identities of the plant PALs to prokaryote and
animal HAL, Streptomyces PAL, fungal PAL and plant PAL, marked
with yellow, green, purple and blue, respectively.
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